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L-�-2�-Deoxy-4�-thio-1�-purine nucleosides were synthe-
sized efficiently utilizing the neighboring group effect of
the 2-benzoyl-4-thiosugar acetate.

-4�-Thionucleosides in which the furanose oxygen is substi-
tuted by a sulfur atom exhibit interesting biological properties
such as antibiotic,1 antiviral 2 and antitumor 3 activities, and
also have inherent advantages such as a more stable glycosidic
linkage and increased metabolic stability.4 Among these
nucleosides, -2�-deoxy-4�-thio-1�-pyrimidine nucleosides 5

show potent anti-HSV (herpes simplex virus) and antitumor
activities, and -β-2�-deoxy-4�-thio-1�-purine nucleosides
exhibit potent anti-HBV (hepatitis B virus) and anti-
HCMV (human cytomegalovirus) activity, but they were found
to be highly nephrotoxic when tested in vivo.6 Therefore, it was
interesting to synthesize -β-2�-deoxy-4�-thio-1�-purine nucleo-
sides and to compare their biological activities to those of their
corresponding -nucleosides, since many -nucleosides such as
3TC,7 -Fd4C,8 and -FMAU 9 exhibit more potent antiviral
activities with much less cytotoxicity than their corresponding
 counterparts.

However, although -β-2�-deoxy-4�-thio-1�-purine nucleo-
sides show interesting biological activity, the biological activity
of β-2�-deoxy-4�-thio-1�-purine nucleosides has rarely been
reported in the literature because of the synthetic difficulties
in the 2-deoxy-4-thiosugar acetate, together with the unfavor-
able anomeric ratio produced during the condensation. For
example, when a -2-deoxy-4-thiosugar acetate was condensed
with purine bases, the α-anomer was always formed pre-
dominantly over the β-anomer (α :β = 9 :1).10 Van Draanen
and co-workers 6 obtained the desired β-anomer by a trans
glycosylation method using trans-N-deoxyribosylase, but this
method involved synthesis of an anomeric mixture of the -2�-
deoxy-4�-thio-1�-pyrimidine nucleoside followed by condens-
ation with purine bases in the presence of the transfer enzyme
(Scheme 1).

Therefore, it was necessary to develop a new efficient
synthetic method to obtain -β-2�-deoxy-4�-thio-1�-purine
nucleosides for the structure–activity relationship study, as
well as for the purpose of reducing the toxicity of -
nucleosides. Our laboratory developed a very short and efficient
route 11 to the -4-thiosugar, in which the C2 position can
be modified selectively. Since neighboring group participation
by the C2 acyl group is a very efficient way to obtain the
β-anomer selectively in synthesizing nucleosides, our key
intermediate, an -4-thioarabitol derivative, was thought to be
an excellent synthon for the chemical synthesis of -2�-deoxy-
4�-thio-1�-purine nucleosides. Here, we report the highly
efficient synthesis of -β-2�-deoxy-4�-thio-1�-purine nucleo-
sides, utilizing the anchimeric effect of the C2 benzoyl group of
-4-thiosugar.

Results and discussion

The glycosyl donor, -2-benzoyl-4-thiosugar acetate, was syn-
thesized from the -4-thioarabitol derivative 2,11 which could
be easily synthesized from 1,2-O-isopropylidene--xylose in
50% overall yield (Scheme 2). The benzoyl group of 2 was
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removed by treatment with sodium methoxide in quantitative
yield. To obtain the desired neighboring group effect during the
condensation reaction with nucleosidic base, the stereo-
chemistry of the C2 hydroxy group of 3 was inverted using
Mitsunobu conditions (PPh3, DEAD, benzoic acid, 60 �C) to
give 4 (50%) with the concomitant formation of compound 2
(10–20%), which resulted from the participation of the sulfur
atom of the 4-thiofuranose.12 The acetoxy group at the ano-
meric position was introduced by Pummerer rearrangement by
treating 4 with MCPBA, followed by refluxing with acetic
anhydride to yield an acetate 5 (65%).

The synthesis of the target nucleosides 9–11 is shown in
Scheme 3. Condensation of the acetate 5 with silylated 6-

chloropurine in the presence of TMSOTf in 1,2-dichloroethane
gave the desired β-anomer 6� as the predominant product
(60%), which could be formed by the neighboring group effect
of the C2 benzoyl group, and also the α-anomer 6� as the minor
product (6%) after purification by silica gel column chrom-
atography.13 The assignments of the anomeric configurations of
6� and 6� were based on NOE experiments. When each 4�-H
peak of 6� and 6� was irradiated, enhancement of the 1�-H
peak of 6� was observed, suggesting the cis orientation, while
no enhancement of the 1�-H peak of 6� was observed, indicat-
ing the trans configuration. Additionally, the NOE effect (1.5%)

Scheme 2

Scheme 3

between 1�-H and 2�-H of 6� was smaller than that of 6�
(5.3%). It is of interest to note that the N-3 isomer [Rf = 0.32,
UV (MeOH) λmax 271 nm] was initially formed during the
condensation, and smoothly rearranged to the N-9 isomer
[Rf = 0.62, UV (MeOH) λmax 265 nm] on refluxing, as reported
by Chu and co-workers.14 Besides the UV data of 6�, the
assignment of N-9 regiochemistry was further confirmed by the
UV spectral data of the adenine analog 9 [UV (MeOH) λmax 260
nm] and N-methyladenine analog 10 [UV (MeOH) λmax 266
nm]. Treatment of 6� with sodium methoxide afforded 7, which
was deoxygenated using modified Barton’s conditions to give
the 2�-deoxy nucleoside 8. Treatment of 2�-deoxy derivative 8
with boron trichloride produced the 6-chloropurine derivative
9 in low yield because of the partial deprotection of the benzyl
group. However, use of an excess of boron tribromide gave
the desired 9 in 80% yield. Compound 9 was easily converted
to the adenine derivative 10 (95%) by treatment with meth-
anolic ammonia at 80 �C. The N-methyladenine analog 11 was
obtained by heating with 40% methylamine in methanol at
80 �C (96%). The antiviral assay of the final nucleosides 9–11 is
in progress and will be reported in due course.

In summary, we accomplished an efficient synthesis of -β-
2�-deoxy-4�-thio-1�-purine nucleosides through neighboring
group participation of the C2 benzoyl group of the -2-
benzoyl-4-thiosugar. This synthetic method illustrates the
general procedure for the predominant synthesis of β-2�-deoxy-
4�-thio-1�-purine nucleosides from our versatile intermediate,
1,4-anhydro-2-benzoyl-3,5-dibenzyl--4-thioarabitol.
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